

時刻制度概論

2016年2月13日

天野 貴文 技術士(情報工学)・博士(工学)

講演要旨

- 奈良・平安時代から現在に至るまでの時刻制度とコンピュータ上での取り扱い方・アプリの開発方法について概説
- ・時刻の取り扱い方法により障害発生の恐れがある2038年問題(UNIX問題)など時刻問題(年問題)について紹介

もくじ

- 1 時刻制度とは
- 2 江戸時代以前の時刻制度
- 3 和時計アプリの開発
- 4 時刻問題(年問題)
- 5 まとめ

1 時刻制度とは

- 時刻制度(時法, 時刻法) 一日を分けて時刻を決める方法, および時の数え 方のことで広義には暦法・紀年法を含む
- 暦法 太陽月星など天体の動きによって暦を作る方法, または暦に関する法則で日本はグレゴリオ暦を使用
- 紀年法 年を数えたり、記録する方法で日本では元号、干支、西暦(キリスト紀元)、皇紀(神武紀元)を 併用

現在の時刻制度

- 1872 (明治5) 年11月9日 (旧暦) に太政官達第337号 (改暦ノ布告) として発令
- 午前0時~午前12時,午後1時 ~午後12時の12時制
- 24時制はISO 8601:2000
 (JIS X 0301:2002) 「情報交換のためのデータ要素及び交換形式 日付及び時刻の表記」から(YYYY-MM-DD hh:mm:ss)

	午			4		
	後			ĺī	"	
九時	五時	一時	十二時	八時	四時	零時記學
戌半刻	中半刻	午半刻	午刻	長刻	寅刻	子刻
+	六	=		九	五	_
時	,時	時		時	時	畤
亥刻	画刻	米 刻		辰华刻·	寅半刻	子半刻
+	七	Ė.		+	六	三
時	時	時		腊	바	時
亥华刻	西华刻	未平刻		已刻	卯刻	丑刻
士	八	四		+	上	Ξ
時		時		牒	時	時
子刻	戌刻	中刻		巴 半刻	卯半刻	北半刻

画像出典:国立天文台ウェブサイト

太陽暦と太陰暦

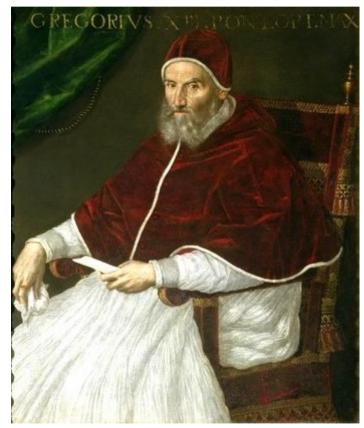
- 太陽暦(平年365日, 閏年366日)
 太陽の黄道上の運行, すなわち季節の交代する周期 (一太陽年)をもとに作られた暦
 例:ユリウス暦, グレゴリオ暦など
- 太陰暦(年約354日)
 月の運行を基準として定めた暦法で、1年が約354日となり季節の推移に合わなくなる
 例:ヒジュラ暦(サウジ)など
- 太陰太陽暦(平年約354日, 閏年約384日)
 太陰暦に季節変化など太陽暦の要素を取り入れて作った暦

例:旧暦、中国暦(時憲暦)、ギリシア暦など

ユリウス暦

- 定時法・太陽暦
- 紀元前45年1月1日, ユリウス・カエサル (シーザーのこと) によって制定
- 1年365日で4年ごとに閏年を置く ことで平均年を365.25日とした
- 正確に365.25日 (365.25^日 ×86,400^秒=31,557,600^秒) を1年 とする時間単位をユリウス年と呼 び、天文学で広く用いられる

例:1光年は真空中の光が1ユリウス年に進む距離



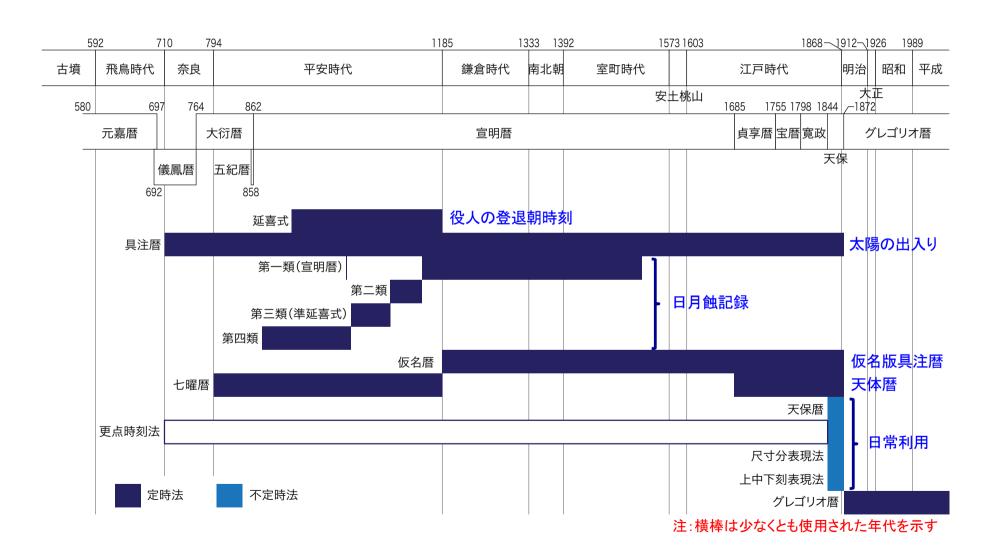
ユリウス・カエサル 画像出典:Wikipedia

グレゴリオ暦

- 定時法・太陽暦
- ユリウス暦の1582年2月24日, ローマ教皇グレゴリウス13世に よりグレゴリオ暦が制定
- 1年は365日で4年ごとに閏年を置くが、うち400年間に3回分を省くことで平均年を365.2425日とした

グレゴリウス13世 画像出典: Wikipedia

定時法と不定時法

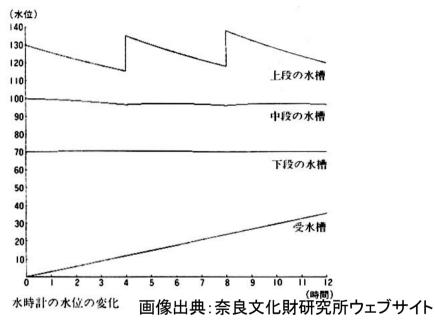

- 定時法
 - 昼夜季節にかかわりなく、一日を等分して時刻を 決める方法
- 不定時法

太陽の出入り時を時刻の基準とし、日の出から日の入り(夜明けから日暮れ)までを昼とし、その逆を夜として、それぞれを等分して時刻を決める方法

日本では江戸時代の一時期を除き定時法

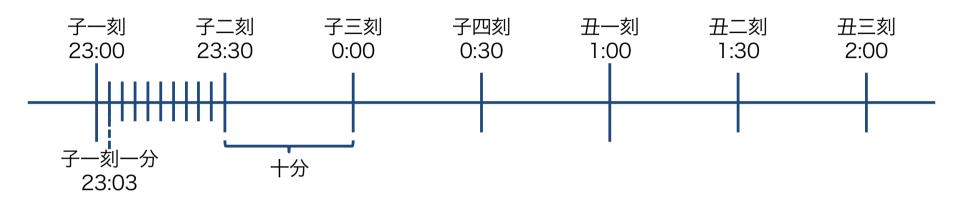
2 江戸時代以前の時刻制度

日本書紀の時刻制度

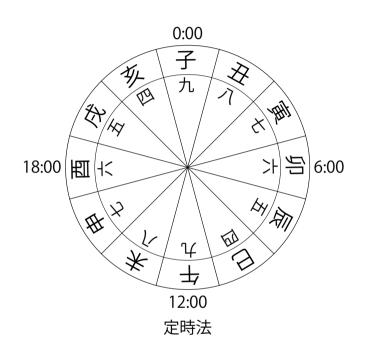

夜半子 平旦寅 日出卯 食時辰 雞鳴丑 禺中巳 しょくじ やはん けいめい へいたん にっしゅつ ぐうちゅう 黄昏戌 日中午 晡時申 人定亥 日昳未 日入西 こうこん にっちゅう にってつ ほじ にちにゅう じんじょう

- 舒明天皇五年(636年)時刻名が公式発表
 - 今より以後、卯の始めに朝りて、巳の後に退れ。
- 斉明天皇六年(660年)漏刻の製作
 - 皇太子初めて漏刻を作りて民をして時を知らしむ。
- 天智天皇十年(671年)漏刻の使用
 - 夏四月丁卯朔辛卯、漏刻を新台に置き、始めて候時を打ち、 鐘鼓を動し、始めて漏刻を用ふ。

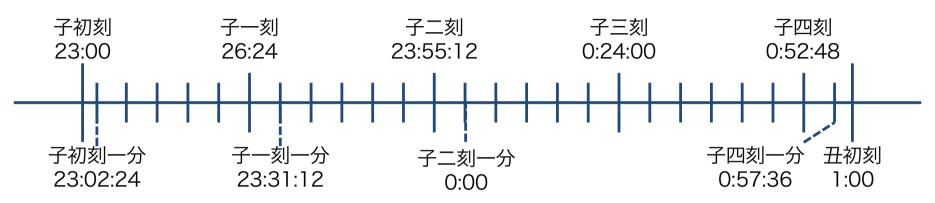
漏刻 (水時計)



• 奈良朝時代の初期では二人の漏刻博士が漏刻により時刻を知り、守辰丁(陰陽寮の職員)に指図して時の鐘鼓を打たせていた


延喜式に付随する時刻制度

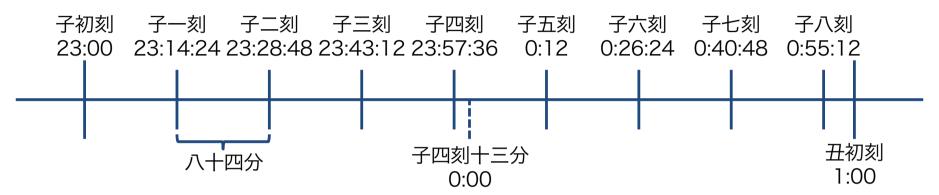
- 平安時代・延長五年(927年)に編纂された延 喜式(律令の施行細則)に付随する制度
- 定時法・四十八刻制,一日十二辰刻,一辰刻が四刻,一刻が十分,一分が現在の3分,子三刻が現在の午後12時
- 時刻確認に漏刻を使用


時の鼓鐘

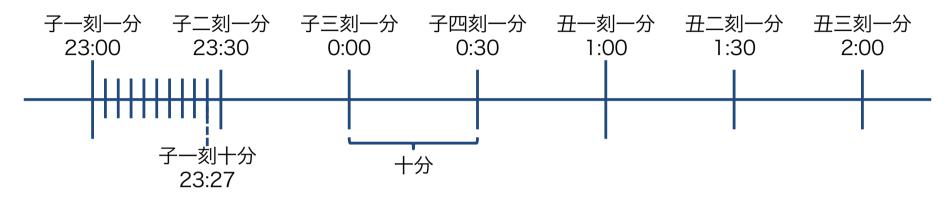
- 延喜式の陰陽寮の規定に記載
- 定時法では辰刻始点に子午は9回, 丑未8回, 寅申7回, 卯酉6回, 辰戌5回, 巳亥4回の鼓を打つ

具注暦に付随する時刻制度

- 奈良時代から明治五年(1872年)の改暦まで使用 された具注暦(漢文の暦本)に付随する制度
- 定時法・五十刻制,一日十二辰刻,一辰刻が四刻 一分,一刻が六分,一分が現在の4分48秒,子二刻 一分が現在の午後12時
- 御堂関白記(藤原道長,現存998~1021年)



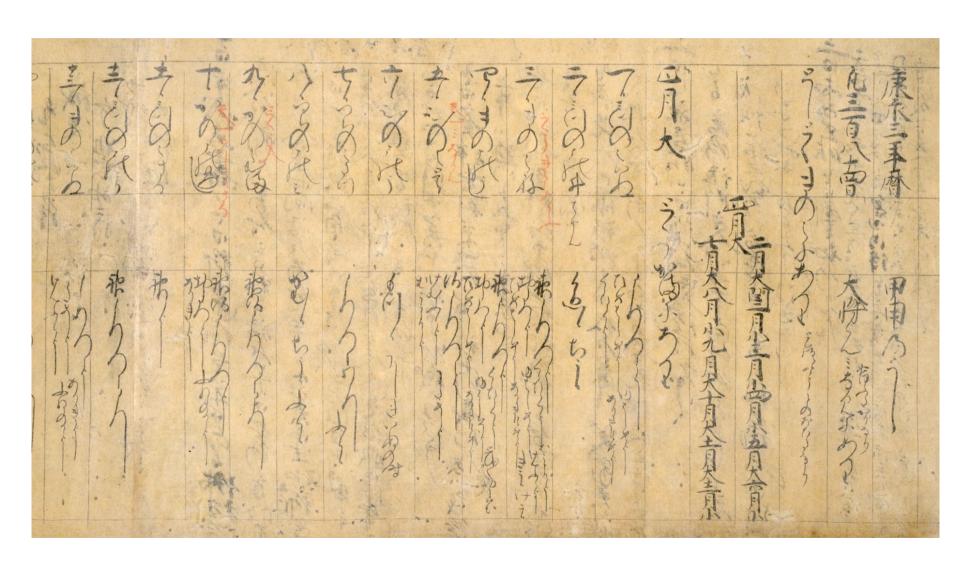
具注暦


宣明暦に付随する時刻制度

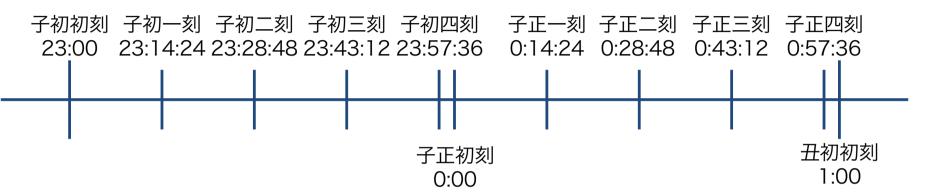
- 宣明暦に付随する制度,とくに左経記(1027年,源経頼)および山槐記(1155年,中山忠親)以降で使用実績あり、日月食の記録用
- 定時法・百刻制,一日十二辰刻,一辰刻が八刻と二十八分,一刻が八十四分で現在の14分24秒,一分が現在の約10.29秒,子四刻十三分が現在の午後12時

準延喜式に付随する時刻制度

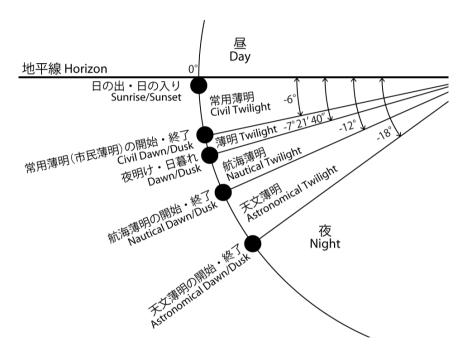
- 延喜式に準ずる制度、とくに小右記(1029年、藤原実資)から中右記(1097年、藤原宗忠)の間に使用実績あり
- 定時法・四十八刻制, 一日十二辰刻, 一辰刻が 四刻, 一刻が十分, 一分が現在の3分, 子三刻 一分が現在の午後12時


仮名暦に付随する時刻制度

- 鎌倉時代から明治五年(1872年)の改暦まで 使用された仮名暦(仮名文の和暦)記載の制度
- 定時法・百刻制, 一日十二辰刻, 一辰刻が八刻と三分の一, 一刻が現在の14分24秒で八刻のみ現在の4分48秒, 子四刻が現在の午後12時, 宣明暦から分を除いたもの



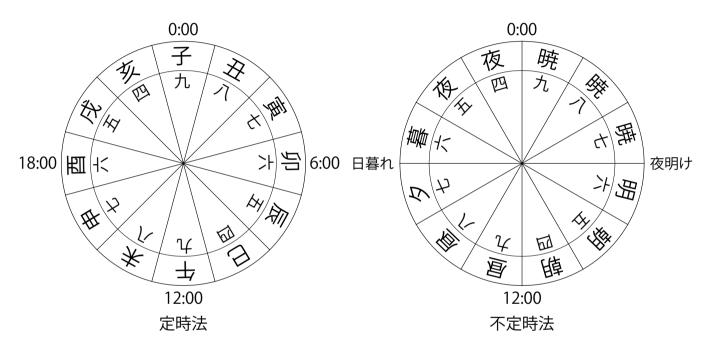
仮名暦


七曜暦に付随する時刻制度

- 七曜暦(天体暦)に付随する制度で,鎌倉時代に中絶,貞享二年(1685年)に再開後,明治五年(1872年)の改暦まで使用された
- 定時法・百刻制, 一日十二辰刻, 一辰刻は八刻 三分の一で一辰刻の前半が初刻, 後半が正刻, 一刻が現在の14分24秒, 子正初刻が現在の午 後12時, 分は存在しない

不定時法と夜明け・日暮れ

- 貞享暦・宝暦暦 夜明けは日の出前二刻半(36分)前、日暮れは日の入り後二刻半後
- 寛政暦 太陽の俯角が7度21分40秒となる時刻(京における春分・秋分の日の 出二刻半前,日の入り二刻半後時点の太陽俯角)


天保暦に付随する時刻制度

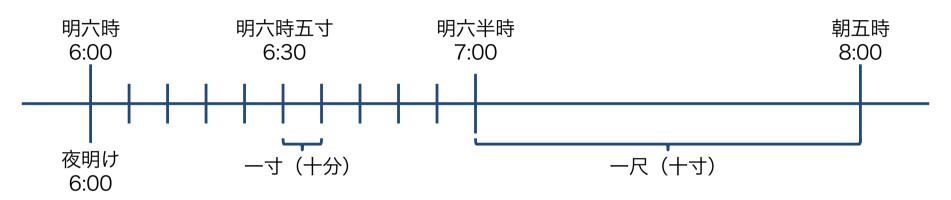
- 江戸時代の天保暦(天保十五年, 1844年)に付随する制度で明治五年(1872年)の改暦まで使用された
- 夜明けと日暮れ,日暮れと夜明けの時間をそれ ぞれ六辰刻に等分,一辰刻は十分,一分が現在 の約12分,暁九つ時あたりが現在の午後12時

不定時法下の時の鼓鐘

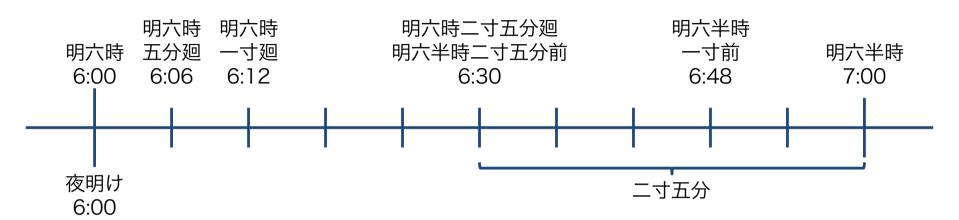
- 定時法では辰刻始点に子午は9回, 丑未8回, 寅申7回, 卯酉6回, 辰戌5回, 巳亥4回の鼓を打つ
- 不定時法では明六つ、暮六つに6回の鐘を鳴らす
- 二代将軍秀忠から十二辰刻すべてで鳴らされた

和時計

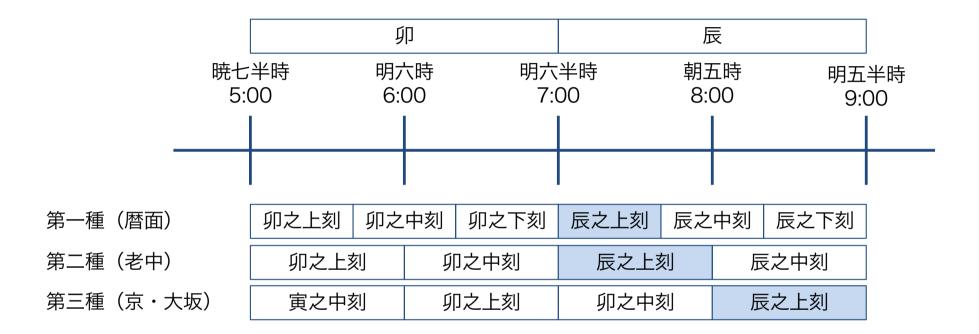
- 西洋時計の機構にならって作られた時計で、不 定時法の表示が可能
- 櫓時計, 尺時計, 枕時計など


更点時刻法

- 夜の時刻を示すため時刻制度で奈良朝以降に使 用された
- 夜明けから日暮れは天保暦と同じ、日暮れから 夜明けを五更に等分、一更が五点、一点が現在 の約28分48秒、三更三点が現在の午後12時


尺寸分表現法 第一種

- 江戸時代に尺時計が使用されるとともに普及した時刻法
- 夜明けと日暮れ、日暮れと夜明けの時間をそれ ぞれ六辰刻に等分、一辰刻が二尺、一寸が現在 の約6分、一分が現在の約36秒


尺寸分表現法 第二種

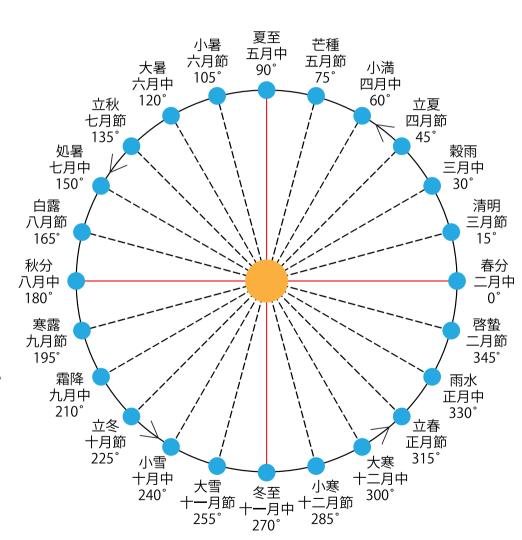
- 江戸時代に尺時計が使用されるとともに普及した時刻法
- 夜明けと日暮れ、日暮れと夜明けの時間をそれ ぞれ六辰刻に等分、一辰刻が一尺、一寸が現在 の約12分、一分が現在の約72秒、二寸五分で 廻・前の表記が変わる

上・中・下刻表現法

 一辰刻を上刻、中刻、下刻に三等分する方法で、 暦面の方法、幕府執政方、地方在勤方など複数 の制度が混在した

3 和時計アプリの開発

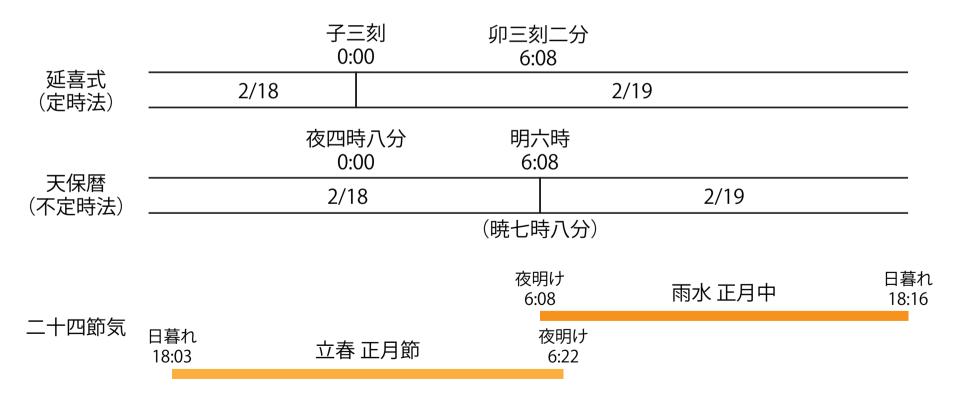
- 定時法 現在のグレゴリオ暦で使用している時刻の呼び名を変 えるだけで対応可能
- 不定時法 毎日の任意場所における夜明け・日暮れ時刻の計算が 必要


天保暦の計算に必要な情報

- 太陽高度 h(d)
 - $\sin h(d) = \sin \delta (d) \cdot \sin \phi + \cos \delta (d) \cdot \cos \phi$ $\cdot \cos t(d)$
 - $t = \Theta_0(d) + \lambda \alpha(d)$
 - d:時刻変数, α :赤緯, δ :赤径, ϕ :緯度, λ :経度
 - Θ₀: グリニッジ恒星時(春分点の時角)
- 日暮れ・夜明けの高度(出没高度) k
 - $k = -E R + \Pi 7^{\circ}21'40''$
 - E:地平線伏角, R:大気差, П:視差
- 二十四節気の各節気開始時の夜明け・日暮れ 時刻

二十四節気の設定

- 平気法(恒気法)時間分割法,冬至間を24等分
- 定気法
 空間分割法,太陽が
 北回帰線に到達
 中気は黄経30°の倍数,節気は中気+15°



節気変更と日の境界

• 天の昼夜:午前零時

• 人の昼夜:明六つ(夜明け)

和時計・日本の時刻制度

- iOS用時刻換算アプリ
- 有料版は定時法・不定時法計13種類が利用可能
- 無料版は不定時法の天保暦のみ利用可能
- 個人製作の和時計調節や古文書の時刻換算, 時 の鐘鑑賞など

公開中の時刻・時間関連アプリ

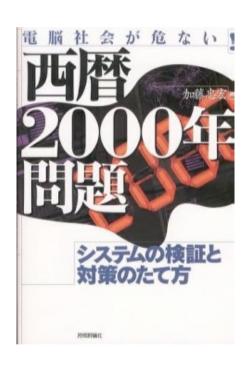
音声時計

音声ストップウォッチ

音声タイマー

学校チャイム

あかつきアラーム


和時計•天保暦

和時計・日本の 時刻制度

4 時刻問題 (年問題)

コンピュータの時刻処理における桁あふれなどの 想定外の事態により誤作動が発生する問題

発現済みの時刻問題

問題年	概要	主な被害
1999年	①1900年を1年目とした場合に年数が3桁になる、 ②年数を下2桁で処理していたシステムで99をエ ラーコードとしていた場合に年を識別できない問 題	とくに発生せず
1999年8月21日	GPSの内部時間の桁数があふれて0に戻る問題	一部カーナビが誤動作
2000年 (Y2K)	年数を下2桁だけや,2000年を平年(非閏年)と 処理していたシステムに生じる問題	富士通・沖電気製の郵貯ATM が停止、アメダスの誤作動など
2001年9月9日 (10億秒問題)	1970年1月1日0時(UNIXエポック)からの秒数 が十進法で9桁から10桁になり,経過秒数を文字列 でソートすると1,000,000,000<999,999,999と なり新旧が正しく処理されない問題	Yahoo! JAPAN掲示板の誤動作,Windows Meでシステムの復元が使用不可
2008年	2000年以降も年数を下2桁でかつ文字列として処理していたシステムで、先頭が0の場合には八進数として扱われる処理系で生じる問題	Perlで製作されたネットゲーム で誤動作
2010年	年の内部表現に西暦下2桁のBCD(二進化十進数) を使用している場合,2010の内部表現が10の BCDで0x10となるのを0x10=16と16進法で解釈 することで生じる問題	シチズンの電波腕時計やオーストラリアクィーンズランド銀行のシステムが誤動作(2010年を2016年と判定)
うるう秒 2012年7月1日	うるう秒(8:59:60)挿入により時刻が1秒遅れる 問題,過去26回1秒挿入	一部Linuxの暴走,mixiほか Webサービス障害
iOS日付バグ	NTP参照なし(自動設定オフ)で日付を1970年1 月1日にして再起動するとフリーズする問題	自力復旧不可(iPhone5S~)

38

うるう秒

- 1957年以前は地球の公 転・自転に基づく天文 時(世界時UT1)
- 1958年より原子時計 (セシウム133原子の 遷移周波数) に基づく 国際原子時TAIが開始
- 原子時計に基づく協定 世界時(UTC)と天文 時とのずれが0.9秒以内 に収まるよう随時調整

UTC: 2015/07/01 00:00:00 JST: 2015/07/01 09:00:00

TAI-UTC: 36

NTP: 3644697600 UNIX: 1435708800

回	実施日	回	実施日
1	1972年7月1日	14	1988年1月1日
2	1973年1月1日	15	1990年1月1日
3	1974年1月1日	16	1991年1月1日
4	1975年1月1日	17	1992年7月1日
5	1976年1月1日	18	1993年7月1日
6	1977年1月1日	19	1994年7月1日
7	1978年1月1日	20	1996年1月1日
8	1979年1月1日	21	1997年7月1日
9	1980年1月1日	22	1999年1月1日
10	1981年7月1日	23	2006年1月1日
11	1982年7月1日	24	2009年1月1日
12	1983年7月1日	25	2012年7月1日
13	1985年7月1日	26	2015年7月1日

今後発生する問題

問題年	概 要
2019年4月7日	GPSの内部時間の桁数(週の積算データが10bit)があふれて0に戻る問題
2025年 (昭和100年)	昭和2桁で処理するシステムで昭和100年が昭和0年と認識される問題
2030年	1930年~2029年を下2桁で表現しているシステムで生じる問題
旧暦2033年	西暦2033~2034年にかけて旧暦の月名が天保暦の暦法で決定できなくなる問題
2036年	NTPが使用する積算秒数の起点,1900年1月1日0時からの秒数が32bitからあふれる問題(RFC 4330に2104年まで有効な回避方法が記載)
	UNIXで1970年1月1日0時(UNIXエポック)からの秒数が31bitを超え(time_t型),組み込みLinuxなど32bit符号付きで処理しているシステムで生じる問題
2040年	HFSのタイムスタンプが2040年2月6日までであるため発生する問題

Binary : 01111111 11111111 11111111 11110000

Decimal: 2147483632

Date : 2038-01-19 03:13:52 (UTC)

Date : 2038-01-19 03:13:52 (UTC)

旧暦2033年問題

- 定気法の影響(平気 法だと発生しない)
- 冬至を含む月を11月, 春分は2月,夏至は5 月,秋分は8月と定義
- 中気を含まない月は 閏月(今年はなし)

朔(新月)	中気	旧暦月
2016年1月10日	大寒(十二月中)1月20日	十二月
2016年2月8日	雨水(正月中)2月19日	一月
2016年3月9日	春分(二月中)3月20日	二月
2016年4月7日	穀雨(三月中)4月20日	三月
2016年5月7日	小満(四月中)5月20日	四月
2016年6月5日	夏至(五月中)6月21日	五月
2016年7月4日	大暑(六月中)7月22日	六月
2016年8月3日	処暑(七月中)8月23日	七月
2016年9月1日	秋分(八月中)9月22日	八月
2016年10月1日	霜降(九月中)10月23日	九月
2016年10月31日	小雪(十月中)11月22日	十月
2016年11月29日	冬至(十一月中)12月21日	十一月
2016年12月29日	大寒(十二月中)1月21日	十二月

旧暦2033年問題(つづき)

- 天保暦では中気設定 に定気法を使用
- 朔間に中気が偏ることで月が決められなくなる
- 時憲暦(中国, 1644年~)では冬 至を含む月を十一月, 次の冬至まで13月の 場合は最初の無中気 月を閏月としている

朔(新月)	中気	旧暦月	時憲暦
2033年3月31日	穀雨(三月中)4月20日	三月	三月
2033年4月29日	小満(四月中)5月21日	四月	四月
2033年5月28日	夏至(五月中)6月21日	五月	五月
2033年6月27日	大暑(六月中)7月22日	六月	六月
2033年7月26日	処暑(七月中)8月23日	七月	七月
2033年8月25日		閏七月	八月
2033年9月23日	秋分(八月中)9月23日	八月	九月
2033年10月23日	霜降(九月中)10月23日	九月	十月
2033年11月22日	小雪(十月中)11月22日 冬至(十一月中)12月21日	十一月	十一月
2033年12月22日		閏 十一月	閏 十一月
2034年1月20日	大寒(十二月中)1月20日 雨水(正月中)2月18日	十二月	十二月
2034年2月19日		一月	一月
2034年3月20日	春分(二月中)3月20日	二月	二月

今後発生する問題 (つづき)

問題年	概要
2042年	IBM・System zのSTCK命令で取得する64bitのTODクロックが2042年9月17日中にオーバーフローする問題
2048年	FATの時刻起点1980年1月1日0時からの秒数が31bitからあふれ、32bit符号付きで処理しているシステムで生じる問題(FATそのものは2107年12月31日まで対応、7bit)
2050年	1950年~2049年を下2桁で表現しているシステムで生じる問題
2053年	TRONなど1985年1月1日0時からの秒数が31bitからあふれ, 32bit符号付きで処理しているシステムで生じる問題
2070年	1970年~2069年を下2桁で表現しているシステムで生じる問題
2079年	FATの時刻起点1980年1月1日0時を用い、年数を下2桁だけで処理するシステムで生じる問題
2088年 (平成100年)	平成2桁で処理するシステムで平成100年が平成0年と認識される問題
2100年	2000年以降に作られた年数を2桁で表すシステムや、2100年を間違って閏年と設定したシステムで生じる問題
2108年	FATのタイムスタンプが2107年12月31日までであるため発生する問題
10000年	西暦が5桁になることで生じる問題

負の遺産を残さないために

- システムが提供するクラスの利用
 - 時間はintで定義せずNSTimeIntervalを使用
 - 日付・時刻はテキスト形式でなく常にNSDate
 - テキストに変換するときはNSDateFormatter

不具合予期時のOSレベルでの改修 バグの混入低減 多言語で利用可能(小数点ほか)

5 まとめ

- ・現在の時刻制度は明治5年に定められたグレゴリオ暦に基づく定時法・12時制
- 日本では奈良時代から定時法で、不定時 法の使用は江戸末期の約30年
- 不定時法のアプリ開発には太陽高度と二 十四節気の計算が必要
- コンピュータで時刻を扱う際はできるだけOSの時刻クラスを使用してリスク回避

参考文献

- 1. 石原幸男:暦はエレガントな科学—二十四節気と日本人, PHP研究所, 2012年1月.
- 2. 浦川伸一: 2000年問題から2036年問題, 2038年問題へ, 情報処理, Vol. 52, No. 6, pp. 654-666, 2011年5月.
- 3. 川崎晃:万葉時代の時刻制度—音の遠景, 国文学解釈と教材の研究, Vol. 48, No. 14, pp. 104-111, 2003年12月.
- 4. 鈴木一義監修:見て楽しむ江戸のテクノロジー、数研出版、2006年5月.
- 5. 多ヶ谷有子: 文学作品における時刻表現の考察—現代の時代・歴史小説—, 関東学院大学文学部紀要, Vol. 130, pp. 25-69, 2014年7月.
- 6. 田中道彦・田中靖彦: 日晷と時刻制度—暦と日時計—, 技術史教育学会誌, Vol. 4, No. 2, pp. 13-19, 2003年3月.
- 7. 長沢工:日の出・日の入りの計算, 地人書館, 1999年12月.
- 8. 名和小太郎: コンピュータ西暦2000年問題—事前の改善対事後の保険—, 情報管理, Vol. 51, No. 5, pp. 363-364, 2008年8月.
- 9. 橋本万平:日本の時刻制度増補版, 塙書房, 1981年6月.
- 10. 橋本万平: 我が国の時刻制度について、和時計、Vol. 1, pp. 3-14, 1992年6月.